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Heredity of Stationary and Reversible Stochastic Processes

by

Richard F. Serfozo

Georgia Institute of Technology

Abstract. When a stochastic process (a random measure, set, field,

etc. on a group) is stationary, ergodic, or reversible, then certain

functions of this process inherit these properties. We present

sufficient conditions for this inheritance.

Introduction. Associated with a queueing network process (see

Chapters 2,3 of Kelly (1979)), there are a number of stochastic processes

that describe various aspects of the queues. Examples are (i) the point

process of times at which customers move from a certain set of queues to

another set, and (ii) the process depicting the service station with the

largest queue and the length of that queue over time. When the queueing

network process is stationary or reversible, do these associated

processes inherit these properties? I shall present general criteria for

this inheritance. The basic issue is: If a stochastic process is

stationary or reversible, then what types of functions of it are also

stationary or reversible?

Preliminaries. Let X - [X(t): t c R) be a stochastic process with

state space S. Here R denotes the real line or, more generally, a group

with a a-field R on it that renders the group operation (addition)

measurable. Assume that X has sample paths in a subspace X of the space

F(R,S) of all measurable functions from R to S. The process X is

This research was supported in part by grant AFOSR-84-0367.
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stationary if, for any s,...,sn in R,

X(s1 + t),...,X(sn + t 1 X(s)...X(s ), teR,

(here = means equality in distribution). A compact way of expressing

this is X o T 4 X, t c R, where 0 denotes the convolution operator andt

Tt is the time-shift transformation on R (T ts = s + t). A stationary

process X is ergodic if each of its invariant events has probability zero

or one (an event A is invariant for X if there is a B c X such that

{X 0 T c A) - B, t e R). The process X is reversible if it is
t

stationary and X 0 T_ 4 X, where T_ is the time-reversal transformation

on R (T-t = -t). Note that X is reversible if and only if X o Tt o T-

X, tcR (this is sometimes used as the definition).

The preceding terminology also applies to point processes and other

random elements. Let N = {N(B): B E R} be a point process on R, where

N(B) represents the number of points (possibly infinite) in the set B.

Stationarity, ergodicity, and reversibility of N are defined as above,

where Tt and T are the time-shift and time-reversal transformations on R

(instead of R): TtB = B + t, T-B = -B. For instance, N is reversible if

it is stationary (No0 Tt N, t E R) and N o T- = N. There are similar

definitions of stationarity, ergodicity, and reversibility for random

measures, random sets, etc., and vectors of these elements.

It is well known that if the process X is stationary and g: S + S'

and h: X* F(R,S') are measurable functions, then the processes Y(t) =

g(X(t)) and Z(t) = h(X o T t) are also stationary. (The g is a special

case of h.) Moreover, Y and Z are ergodic when X is. See for instance
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Chapter 6 of Breiman (1968). In addition, an easy check shows that Y and

Z are reversible when X is. I shall now show how these results extend to

a larger class of functions and to point processes and other random

elements.

Results. A key observation is that stationarity and reversibility

are special cases of the following notion of invariance of a process

under a family of "time" transformations. Let Y be a random element and

let 0 be a family of measurable transformations from the domain of Y onto

itself. The domain of Y is R or R or cartesion products of them. The

d
random element Y is invariant under the set of transformations 0 if Yoo =

Y for each 0 c 0. For example, the vector Y = (X,N) is reversible if it

is invariant under the transformations [T ,Tt: t e R}, where T and Tt

are the time-reversal and time-shift transformations on R x R.

For the following results, let Y and Z denote random elements

(possibly vectors of processes, measures, sets, etc.) with sample paths

or realizations in the respective spaces V and Z. Assume that Z - f(Y),

where f: V * Z is a measurable function.

Lemma. If Y is invariant under the set of transformations 0, and f

satisfies f(y) o 0- f(y o ), for each ' c 0, y c V, then Z is invariant

under the set of transformations 0.

Proof. This follows since, for each * c 0,

z oo f(Y) 0 - f(Y o *) = f(y) . Z.

Proposition. If Y is stationary and f satisfies

(1) f(y) o Tt  f(y o T, for each t R, y c V,
t t

then Z is stationary. If Y is reversible and f satisfies (1) and

f(y) o T- f(y 0 T), y E Y, then Z is reversible. If Y is stationary
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and ergodic and f satisfies (1), ther Z is stationary and ergodic.

Proof. The first two assertions are special cases of the preceding

lemma. The third assertion follows since {Z o Tt e A} =

{Y o Tt e f- (A)) implies that the invariant events of Z are the same as

those for Y.

Example. Suppose Y = {(Y(t),...,Ym(t)): t e R} is a queueing network

process, where Y.(t) denotes the number of customers at queue j at time

t. Assume that Y cannot have an infinite number of transitions in a

finite time interval. Specifics on the operation of the queues are not

needed for this discussion. Let Y (t) = Z Y.(t), the number of
jcJ '

customers in the set of queues J c {1,...,m}. Let N denote the point

process of times at which customers move from J to another set of queues

K, and let X(t) denote the largest number of customers in J since the

last time the number was zero. Clearly (N,X) = f(Y) = (f (Y), f2(y)),

where

f 1 (y) = Z l(Y (t) = Y3 (t-) - 1, Y K(t) = YK(t-) + I),
t EB

I is the indicator function, and

f2 (y)(t) = max{y3 (s): Tt < s < t}, t c R,

and Tt = supts 4 t: y (s) = 0}, assuming that Tt exists for each t. Then

the preceding proposition establishes that the vector (N,X) is

stationary, ergodic or reversible when Y has these respective

properties.



5

Extensions. The lemma extends to state-space transformations as well

as time transformations as follows. Define the random element Y to be

(h,t)-invariant if h(Y o ) d h(Y) o 0, 0 c $, where h: V+ F(R,S') is

measurable. For example, if the process X is (h,{Tt t R})-invariant,

where h(x)(t) - g(x(t)) and g: S + S satisfies g(g(s)) = s, then X is

dynamically reversible (see p. 31 of Kelly (1979)). The lemma for

(h,O)-invariance is: If Y is (h,O)-invariant and f satisfies h(f(y) o

= h(f(y o 0)), 0 e 0, y £ V, then Z = f(Y) is also (h,O)-invariant. The

preceding results readily extend to time and space transformations h,O

that are random.
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